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Abstract. Engineering design problems often involve global optimization of functions that are
supplied as ‘black box’ functions. These functions may be nonconvex, nondifferentiable and even
discontinuous. In addition, the decision variables may be a combination of discrete and continu-
ous variables. The functions are usually computationally expensive, and may involve finite element
methods. An engineering example of this type of problem is to minimize the weight of a structure,
while limiting strain to be below a certain threshold. This type of global optimization problem is
very difficult to solve, yet design engineers must find some solution to their problem – even if it is
a suboptimal one. Sometimes the most difficult part of the problem is finding any feasible solution.
Stochastic methods, including sequential random search and simulated annealing, are finding many
applications to this type of practical global optimization problem. Improving Hit-and-Run (IHR) is
a sequential random search method that has been successfully used in several engineering design
applications, such as the optimal design of composite structures. A motivation to IHR is discussed
as well as several enhancements. The enhancements include allowing both continuous and discrete
variables in the problem formulation. This has many practical advantages, because design variables
often involve a mixture of continuous and discrete values. IHR and several variations have been
applied to the composites design problem. Some of this practical experience is discussed.

Key words: Adaptive search, Global optimization, Multi-disciplinary optimization, Simulated an-
nealing

1. Introduction

Global optimization problems are prevalent in engineering design. Often times the
physical nature of engineering problems have multiple optima, however engineers
are just beginning to make use of techniques available in global optimization, as
opposed to local optimization techniques. Engineering design problems, in par-
ticular structural design, have used traditional gradient-based local optimization
methods for over 30 years [31]. How can global optimization be used for engi-
neering design taking practical considerations into account, and how should we
develop optimization tools so they will be useful to engineers? This paper shall
address this issue. The introduction describes the environment that practicing en-
gineers operate under, and includes a brief description of a structural design area
that I have worked in for several years. After the introduction, this paper describes
several sequential random search methods for global optimization, and summarizes
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some theoretical results. This motivates the development of a class of Hit-and-Run
algorithms. Finally, numerical experience applying these algorithms to structural
design is discussed.

1.1. ENGINEERING ENVIRONMENT

Engineers always strive to optimize their designs – after all, who wouldn’t want the
strongest, cheapest, and overall best design? Yet in practice, engineers tend to com-
pare a very few number of designs. There is a real need for practical optimization
techniques for the engineering community. Even engineers that use gradient-based
local optimization methods have commented that their problems tend to have many
local optima [5, 34].

Very few engineers have considered using global optimization techniques, partly
perhaps because the methods are still relatively new. The most common global
optimization method found in practice is multi-start [5]. However newer methods
are quite powerful, and with the advances in computer technology, are becoming
very practical. In addition, many practicing engineers do not formulate their design
problems as formal optimization problems. Hopefully, this paper and others like
it will help bridge the gap between the advances in global optimization and the
practical needs of the engineers.

To understand how global optimization can be used in practice, it is important
to consider the design engineer’s point of view. Many times the practicing engi-
neer has very tight deadlines and must respond very quickly to changes in design.
Consequently, they are primarily interested in any feasible design, and secondarily
interested in an optimal design. In addition, the problem definition changes fre-
quently so, for example, one day the optimization issue may be to minimize weight
subject to buckling constraints and the next day may be to maximize stiffness under
weight constraints. The optimization process may be most effective early in the
design process, when decisions are made that determine a large percentage of the
final cost of the product. This adds to the need for solving a lot of different problems
and developing insight into the design space. Contrast this type of environment
with a scheduling problem which may be solved repeatedly a hundred times a day
but with slightly different data. The environment is very different and calls for
a different approach to optimization. Instead of fine tuning a large scale integer
linear programming algorithm, we must develop a flexible approach that be used
for a variety of functions.

The functions used in the objective function and constraints are often termed
‘black-box’ functions, because the functions can be evaluated through a computer
subroutine, but are difficult to express in a one-line mathematical formula. Char-
acteristics of black-box functions, such as the gradient, and Hessian matrix, can
be numerically approximated, but may often be numerically unstable. Black-box
functions are very appealing to engineers because they can try out different existing
subroutines and see the effect on the optimal solution. For example, someone who



STOCHASTIC METHODS FOR PRACTICAL GLOBAL OPTIMIZATION 435

is trying to maximize strength might want to see how the design changes when
different approximating equations are used for the strength calculation.

These black-box functions may be highly non-linear functions, and may involve
many local optima. The functions may be nondifferentiable or even discontinuous.
The design variables may be continuous or discrete, or a mixture of the two. For
example, a 10-bar truss is a typical structural optimization problem. The design
variables are the diameters of the bars. It is interesting to compare the optimal
solutions for the problem when the diameters are assumed to be continuous vari-
ables, versus when the diameters are restricted to discrete values that are commonly
available. This is an example of how manufacturing considerations can motivate
discrete variables instead of continuous variables.

Global optimization methods that are practical for this type of environment can-
not rely strongly on the structure of the functions, since the structure (convexity,
continuity, etc.) changes so frequently. In addition, there is no time to tailor the
algorithm when the functions change. So we are seeking flexible methods that can
be used for black-box, mixed continuous/discrete, global optimization problems.
Of course trade-offs must be made. In Section 2, trade-offs between the structure
of the problem and the quality of solution will be discussed. Engineers in practice
may be more satisfied with a quick solution that is feasible but sub-optimal, than
with a globally optimal solution that takes months to obtain. This is demonstrated
in the next example.

1.2. EXAMPLE – DESIGN OF A COMPOSITE PANEL

For several years I have worked with several colleagues to develop optimization
software for the design of large composite structures, specifically laminated com-
posite panels to be used in aircraft fuselage [3, 4, 33]. Through the collective efforts
of NASA, Boeing, the University of Washington and others, a preliminary design
software package called COSTADE (Cost/Composite Optimization Software for
Transport Aircraft Design Evaluation) was developed [12, 13].

To simplify the problem for this paper, consider as an example of an engineering
design problem, the design of a stiffened panel made from advanced composite
materials, such as graphite epoxy, as illustrated in Figure 1. The design variables
include the fiber angles associated with each ply (θi, for i = 1, . . . , n), and the
geometry variables for the stiffener (width of cap, width of flange, height of web,
angle of web, and stiffener spacing), and the number of plies in the skin and in the
stiffener (n). In this example, the binary variables (ti , for i = 1, . . . , n) indicate
whether plyi exists in the laminate, andn is viewed as an upper bound on the
number of plies. Some of these variables may be continuous and others may be
discrete. The most interesting are the fiber angles, which may take on continuous
values between+90 and−90 degrees, or, for practical purposes the fiber angles
are often restricted to discrete values, such as 0,±45, or 90 degrees.
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Figure 1. Design variables in a composite stiffened panel.

The functions to be used as constraints and/or the objective function can be
described as black-box functions where the functions often are only available in
the form of a computer subroutine. For example, stiffness of a composite laminate
can be calculated using classical lamination theory [7] or it could involve a finite
element analysis. The calculations in COSTADE are based on classical lamination
theory, although recent work at Boeing and the UW has focused on incorporating
finite element analyses into the global optimization design framework [16, 18].

To illustrate the global nature of these equations, a plot of the in-plane stiffness
of a four ply, symmetric laminate,[θ1, θ2, θ2, θ1], using classical lamination theory,
is shown in Figure 2. The greatest in-plane stiffness occurs when the fiber angles
are all 0 degrees, as makes sense intuitively. The plateau in the graph represents
infeasible designs, with a stiffness that is less than a prescribed critical value.
If stiffness is used as an objective function, it can be seen to be nonlinear and
nonconvex. If stiffness is used in the constraints to allow only those designs above
the threshhold of critical stiffness, the feasible region itself is nonconvex and even
has holes in it. This indicates what a difficult problem even attaining feasibility can
be.

Figure 2. Graph of in-plane stiffness for a four ply symmetric laminate,[θ1, θ2, θ2, θ1].
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The basic formulation for the composites design problem can be written as,

(P )

minimize f (x)

subject to gj (x) ≥ 0 for j = 1, . . . ,m
x ∈ X
Li ≤ xi ≤ Ui for i = 1, . . . , n

where the objective functionf (x) may be the weight or cost of the structure, the
m constraints ensure that margins of safetygj (x) based on mechanics calculations
are positive, while allowing the design variables to be restricted to a discrete set of
values,X. There are also upper and lower bounds on the variables. The variables
include fiber angles, geometry variables, and binary thickness variables. There have
been many extensions to this basic formulation.

A major extension has been to extend this formulation to cover an entire panel.
As stated in(P ), this problem prescribes a design at a specific point experiencing
the loads as included in the margin of safety constraints. It is not realistic that the
design of the fuselage is the same for the entire length of the aircraft. According
to design engineers, different locations in the aircraft experience different loads,
which calls for varying designs. For example, the number of plies in the keel near
the mid-point of the aircraft just behind the opening for the landing gear may be
one to two hundred, while the number of plies in the keel near the tail section is
only twenty to thirty. Manufacturing considerations allow ‘ply drops’ to tailor the
design at several points along the length of the aircraft. The COSTADE software
designs a ‘blended panel’ with specific rules for manufacturing incorporated into
an extended formulation [9, 27, 33, 35]. One effect of extending the formulation
to cover an entire panel is that it increases the number of variables by an order of
magnitude; from 20 variables to almost 200 variables.

Other extensions to the basic formulation include multiple objectives, multiple
load cases, penalty function approaches, and incorporating finite element analysis
into the calculation for margins of safety. The details of these extensions are left
to other papers, the next topic to discuss is methods suitable to solve this type of
engineering design problem.

2. Methods to solve these problems

Algorithms for global optimization are often categorized into deterministic meth-
ods and stochastic methods. An excellent overview of global optimization methods
can be found in [6]. At the onset of our experience with the composites design
problem, we tried several deterministic methods, including a branch and bound
scheme coupled with gradient search local optimization methods. Our experience
was that the numerical approximations for the Hessian matrix were very unsta-
ble, often leading to numerical errors. Also, the bounds seemed so loose that the
branch and bound scheme produced enormous lists, and we were not able to solve
problems with more than 10 design variables, due to both memory limitations
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and computation time. Another limitation to the deterministic approaches we tried
was the inclusion of discrete variables. The need to incorporate mixed continu-
ous/discrete variables, coupled with the attempt to solve black-box functions in a
hundred variables led us to consider stochastic methods for global optimization.

The question remains whether random search algorithms are well-suited to this
type of global optimization problem. Several features are important: (i) the quality
of the solution and how close it is to the global optimum; (ii) the computation
involved in the algorithm and the effect the number of variables has on the compu-
tation; and (iii) the ability to handle continuous and discrete variables and to easily
interchange black-box functions.

2.1. SEQUENTIAL RANDOM SEARCH ALGORITHMS

Sequential random search algorithms at first glance are very simplistic methods,
but they have certain advantages. They can be readily adapted to mixed continuous
and discrete variables, and their simplicity makes them well suited to black-box
functions. The basic form of a sequential random search algorithm is to have a
method to generate a candidate point based on the current point and possibility
several previous points, and then a test to either accept or reject the candidate point.

Rastrigin [20] originally proposed a family of step size algorithms where the
candidate point is specifed by moving in directionDk a certain step lengthSk:

Xk+1 =
{
Xk + SkDk if candidate point is accepted
Xk if candidate point is rejected

whereXk is the current point on thekth iteration, andXk + SkDk is the candidate
point. This form of algorithm was described by Rastrigin [15, 20, 21], and extended
by several others [10, 24–26].

Typically the candidate point is accepted if it improves the objective function,
and is rejected otherwise. In simulated annealing [8], the candidate point may be
accepted even if it is not improving, and the acceptance criteria may be probabilis-
tic and based on a temperature with a cooling schedule. The method of generating
the candidate point may be described using a neighborhood rule, but simulated
annealing still fits into the category of sequential random search. In general, a
sequential random search algorithm can be described by

Generate a candidate point,Wk

Update the new point,

Xk+1 =
{
Wk if candidate point is accepted
Xk if candidate point is rejected

In 1981, Solis and Wets [29] provided a general proof with generic conditions
under which a sequential random search algorithm will asymptotically converge
with probability one to the global optimum. To interpret the conditions of con-
vergence quite loosely (see [29] for technical details), the method of generating
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and accepting candidate points must not consistently exclude any region in the
design space. It can be shown [2] that simulated annealing converges in probabil-
ity to the global optimum as long as the cooling schedule within the acceptance
criteria is sufficiently slow, and generation method eventually includes the whole
domain. These conditions are relaxed in [11], where simulated annealing is shown
to converge in probability, even when the next candidate point is sampled from a
distribution whose support is not the whole feasible set. See [11] for details. This
addresses the issue of whether sequential random search methods will find the
global optimum, the next issue is how long it will take.

Several papers on step size algorithms reported surprising performance for such
simplistic sequential random search methods. In fact, there were several reports
[24, 26, 29] that the number of function evaluations was linear in the number
of variables. Most of these early reports were performed on a hyperspherical test
function. Schumer and Steiglitz [26] concluded that ‘despite its simplicity, adap-
tive random search is an attractive technique for problems with large numbers of
dimensions.’

An attempt to provide a general explanation for the reported linear performance
of sequential random search was based on a theoretical analysis of pure adaptive
search (PAS) [19, 36]. Pure adaptive search is a sequential random search method
that consistently improves the objective function on each iteration. For a detailed
definition, see [36], but to interpret loosely, each candidate point is generated ac-
cording to a uniform distribution on the improving level set (set of points with
improving objective function values). Although this step may be practically im-
possible to achieve with one function evaluation, suppose for the moment that it
were possible. In [36] we proved that the expected number of iterations is a linear
function of the dimension of the problem. This linearity result holds for a con-
vex function and for a global optimization (non-convex) problem on a continuous
domain.

In [38] the theoretical linearity result was extended to finite discrete global op-
timization problems as well. Current results [1, 32] extend performance results to a
more general form of PAS, named hesitant adaptive search (HAS). Hesistant adap-
tive search relaxes the assumption that each iteration produces an improving point,
and allows the algorithm to ‘hesitate’ before improving. An analytical expression
for the number of function evaluations for HAS is given in terms of the underlying
generating distribution and hesitation parameters. These theoretical results com-
bined with numerical experience are encouraging that sequential random search
algorithms are appropriate for the type of black-box functions in large dimensions
that are characteristic of the engineering design environment. We now turn to an
implementation of this concept.

2.2. HIT AND RUN BASED ALGORITHMS

The question remains how we can implement an algorithm with performance close
to that of PAS on global optimization problems with black box functions and
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mixed continuous/discrete variables. In 1984, Smith [28] showed that a hit-and-run
method can be used to generate points that are asymptotically uniformly distrib-
uted. The Improving Hit-and-Run (IHR) [37] algorithm couples the idea of PAS
with the hit-and-run generator to produce a sequential random search algorithm
that is easily implemented. The concept is that if hit-and-run could generate an
approximately uniform point, then PAS predicts that we need only a linear number
of such points. Since the point generated by just one iteration of hit-and-run is far
from uniform, the number of function evaluations may not be linear, but in [37],
we showed that the expected number of function evaluations for IHR on the class
of elliptical programs is polynomial in dimension,O(n5/2).

The main step of the IHR algorithm is (see [37] for details)

Xk+1 =
{
Xk + λkDk if f (Xk + λkDk) < f (Xk)

Xk otherwise

where the direction vectorDk is generated as in hit-and-run (uniformly distributed
on a hypersphere) and the step sizeλk is uniform over all step lengths that maintain
feasibility. If the feasible region is described by linear equations, especially upper
and lower bounds, then this is very easy to compute. Because this basic IHR algo-
rithm exhibited good performance, both theoretically and computationally, several
variations have been explored.

One variation to IHR was to add the idea of a simulated annealing algorithm
and use an acceptance probability with a cooling schedule to the hit-and-run gen-
erator [22]. The pros and cons of only accepting improving points (as in IHR)
versus accepting non-improving points according to an acceptance probability (as
in simulated annealing) is a topic of current research [9,16].

A second variation to the basic IHR algorithm was to incorporate a penalty func-
tion approach for highly nonlinear constraints embedded in box constraints. A vari-
able penalty factor was introduced, and the sequential updates of the penalty factor
may be linked to the cooling schedule if desired. Some numerical experiments on
attaining feasibility and maintaining feasibility are reported in [16].

A third variation to IHR was to extend the hit-and-run generator to be applica-
ble to discrete domains [17, 23]. The hit-and-run as described so far was defined
on a continuous domain. An extension to a discrete domain was accomplished
by super-imposing the discrete domain onto a continuous real number system. It
was motivated by design variables such as fiber angles in a composite laminate, or
diameters in a 10-bar truss, where the discrete variables have a natural continuous
analog. Two slightly different schemes are being tested.

In [23], the candidate points are generated using hit-and-run on the expanded
continuous domain, but the objective function of a non-discrete point is equal to the
objective function evaluated at its nearest discrete value. In this way, the modified
algorithm is just IHR operating on a continuous domain where the objective func-
tion is a multi-dimensional step function, with plateaus surrounding the discrete
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Figure 3. Two schemes to modify hit-and-run to discrete domains.

points. This modification still converges with probability 1 to the global optimum,
as discussed in [23].

The diagram in Figure 3 illustrates the method. Starting from pointX1, hit-and-
run on the continuous domain generates a candidate point such asA. The objective
function atA is set equal to that of its nearest discrete pointB, forcing f (A) =
f (B). If the candidate point is accepted, thenX2 = A, and another candidate point
(shown asC) is generated.

A second scheme to modify IHR to operate on discrete domains is to similarly
generate a point on a continuous domain, and then round the generated point to
its nearest discrete point in the domain on each iteration [17]. Again starting from
pointX1 in Figure 3, supposeA is generated. In this version, the candidate point
is taken as the nearest discrete neighbor, in this exampleB. The objective function
is evaluated atB, f (B), and if the point is accepted, thenX2 = B. The difference
in this variation is illustrated by noting that the next candidate point is generated
from B instead of fromA, see pointD in the figure. Also note that only discrete
points are maintained.

Other modifications to the basic hit-and-run generator include ways to generate
the direction vector, and ways to generate the step length. Experiments with us-
ing only coordinate directions as compared to hyperspherical directions have been
performed [34]. Experimentally, coordinate directions outperform hyperspherical
directions on specific problems where the optimum is properly aligned, however
other problems are easily constructed where it can be shown that just using coor-
dinate directions will never converge [9]. The step length can also be generated in
several ways. Instead of generating the point uniformly on the whole line segment,
the line segment can be restricted to a fixed length, or adaptively modified. In
COSTADE, this is referred to as full-line length, restricted line length, or adaptive
step size. See [16] for a more detailed discussion of these modifications.
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3. Numerical experience

Numerical experience with IHR and many of its variations has led us to believe
that it is a viable approach for the type of engineering design problems described
here. Details are left to other papers, but a summary of much of this experience is
included.

Several experiments have been performed on test functions, where the global
optimum is known. A sinusoidal function has been easy to use [9, 16, 23, 34]. It is
easily adapted to multiple dimensions (e.g. 50), the global optimum is analytically
described, it has a large number of local minima and it can also be easily adapted
to discrete domains.

Other numerical experience is based on solving engineering design problems
where the optimal solution is not known. In these cases, the engineers determine
the maximum number of iterations, and then examine the solution generated. The
design often provides insight to the problem at hand. During the development of
COSTADE, several practical problems have been solved with different modifica-
tions to IHR. Originally we applied the basic IHR algorithm to optimize a flat plate
with all continuous variables [3]. This was so successful we next optimized a skin-
stringer composite crown panel [30], reducing the weight of the panel by over 30
percent. Cost was also reduced, and the effect of stringer spacing on cost emerged
as a significant factor. Several points along the crown panel with different loads
were optimized. We did not have an automated way to include blending into the
optimization, so some manual blending was done. After that, the algorithm with
several modifications was applied to the design of a sandwich keel panel [12]. This
was a ‘blended panel’ and involved 160 variables, both continuous and discrete.
The optimization software COSTADE was also used to evaluate the design of a
window belt [14].

The sequential random search algorithm had been used separately to design a
crown panel, keel and window belt. These independent panels still needed to be
resolved into a full design. A remaining challenge was to expand the formulation
to optimize the full barrel of an aircraft fuselage. Finally, in [16], we optimized the
full barrel design of an aircraft fuselage using mixed continuous/discrete variables
and some coarse finite element capability. At each level of success, the number of
variables has grown, the computational time for the function evaluations has grown,
and the additional insight into feasible practical designs has grown. This indicates
success, because engineers have an optimization tool that is flexible enough to meet
their needs.
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